Controlled drug release from electrospun PCL nonwoven scaffolds

Views: 571 Author: Site Editor Publish Time: 2021-03-11 Origin: Site

Currently, electrospun synthetic bioresorbable polymer scaffolds are applied in regenerative medicine and tissue engineering as targeted drug delivery devices because of their mechanical and physico-chemical properties. To control the rate of polymer degradation and drug release from polymer scaffolds, surface modification techniques are widely used. In this study, paracetamol-loaded poly (ε-caprolactone) electrospun fibrous scaffolds were treated by the pulsed electron beam irradiation. Pure control PCL scaffold, as well as scaffolds with four paracetamol concentrations (2 wt./wt. %, 8 wt./wt. %, 16 wt./wt. %, and 32 wt./wt.%) were modified. The mechanical and chemical properties and morphology of modified materials were examined. The sustained release of the model drug over a period of one hour for both non-treated and treated samples was demonstrated. It was shown that treatment leads to an increase in drug release rate and does not change surface morphology of scaffolds and fibers diameter distribution.

Controlled drug release from electrospun PCL non-woven scaffolds via multi-layering and e-beam treatment

Published:2021

Journal:Materials Today Communications

Impact Factor:2.678

Paper link:https://www.sciencedirect.com/science/article/abs/pii/S2352492821001264



×

Contact Us

captcha